Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Anal Chem ; 95(21): 8332-8339, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2324375

ABSTRACT

Poly(dimethylsiloxane) (PDMS) is used in microfluidics owing to its biocompatibility and simple fabrication. However, its intrinsic hydrophobicity and biofouling inhibit its microfluidic applications. Conformal hydrogel-skin coating for PDMS microchannels, involving the microstamping transfer of the masking layer, is reported herein. A selective uniform hydrogel layer with a thickness of ∼1 µm was coated in diverse PDMS microchannels with a resolution of ∼3 µm, maintaining its structure and hydrophilicity after 180 days (6 months). The wettability transition of PDMS was demonstrated through the switched emulsification in a flow-focusing device (water-in-oil [pristine PDMS] to oil-in-water [hydrophilic PDMS]). A one-step bead-based immunoassay was performed to detect the anti-severe acute respiratory syndrome coronavirus 2 IgG using a hydrogel-skin-coated point-of-care platform.


Subject(s)
COVID-19 , Microfluidics , Humans , Hydrogels , Dimethylpolysiloxanes/chemistry , Wettability , Water
2.
Proc Natl Acad Sci U S A ; 119(50): e2209586119, 2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2234185

ABSTRACT

Liquid mobility is ubiquitous in nature, with droplets emerging at all size scales, and artificial surfaces have been designed to mimic such mobility over the past few decades. Meanwhile, millimeter-sized droplets are frequently used for wettability characterization, even with facial mask applications, although these applications have a droplet-size target range that spans from millimeters to aerosols measuring less than a few micrometers. Unlike large droplets, microdroplets can interact sensitively with the fibers they contact with and are prone to evaporation. However, wetting behaviors at the single-microfiber level remain poorly understood. Herein, we characterized the wettability of fibrous layers, which revealed that a multiscale landscape of droplets ranged from the millimeter to the micrometer scale. The contact angle (CA) values of small droplets on pristine fibrous media showed sudden decrements, especially on a single microfiber, owing to the lack of air cushions for the tiny droplets. Moreover, droplets easily adhered to the pristine layer during droplet impact tests and then yielding widespread areas of contamination on the microfibers. To resolve this, we carved nanowalls on the pristine fibers by plasma etching, which effectively suppressed such wetting phenomena. Significantly, the resulting topographies of the microfibers managed the dynamic wettability of droplets at the multiscale, which reduced the probability of contamination with impact droplets and suppressed the wetting transition upon evaporation. These findings for the dynamic wettability of fibrous media will be useful in the fight against infectious droplets.


Subject(s)
Masks , Wettability , Physical Phenomena
3.
Chem Commun (Camb) ; 57(26): 3243-3246, 2021 Apr 04.
Article in English | MEDLINE | ID: covidwho-1747172

ABSTRACT

The hygroscopicity of respiratory aerosol determines their particle size distribution and regulates solute concentrations to which entrained microorganisms are exposed. Here, we report the hygroscopicity of simulated lung fluid (SLF) particles. While the response of aqueous particles follow simple mixing rules based on composition, we observe phase hysteresis with increasing and decreasing relative humidity (RH) and clear uptake of water prior to deliquescence. These results indicate that RH history may control the state of respiratory aerosol in the environment and influence the viability of microorganisms.


Subject(s)
Aerosols/analysis , Wettability , Body Fluids/chemistry , Humans , Humidity , Lung/chemistry , Particle Size , Water/chemistry
4.
Int J Mol Sci ; 22(21)2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1512379

ABSTRACT

The research presented herein follows an urgent global need for the development of novel surface engineering techniques that would allow the fabrication of next-generation cardiovascular stents, which would drastically reduce cardiovascular diseases (CVD). The combination of hydrothermal treatment (HT) and treatment with highly reactive oxygen plasma (P) allowed for the formation of an oxygen-rich nanostructured surface. The morphology, surface roughness, chemical composition and wettability of the newly prepared oxide layer on the Ti substrate were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analysis. The alteration of surface characteristics influenced the material's bio-performance; platelet aggregation and activation was reduced on surfaces treated by hydrothermal treatment, as well as after plasma treatment. Moreover, it was shown that surfaces treated by both treatment procedures (HT and P) promoted the adhesion and proliferation of vascular endothelial cells, while at the same time inhibiting the adhesion and proliferation of vascular smooth muscle cells. The combination of both techniques presents a novel approach for the fabrication of vascular implants, with superior characteristics.


Subject(s)
Endothelial Cells/cytology , Muscle, Smooth, Vascular/cytology , Plasma/chemistry , Titanium/chemistry , Cell Adhesion , Cell Line , Cell Proliferation , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanostructures , Particle Size , Stents , Surface Properties , Wettability
5.
ACS Appl Mater Interfaces ; 13(40): 47996-48008, 2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1440455

ABSTRACT

Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Wetting properties of the mask materials were quantified by measurements of contact angle with a saliva substitute. Mask pass-through experiments were performed using a dispersed metal oxide nanoparticle suspension to model the SARS-CoV-2 virus, with quantification via spatially resolved X-ray fluorescence mapping. Notably, all mask materials tested provided a strong barrier against respiratory droplet breakthrough. The comparisons and characterizations provided in this study provide useful information when evaluating mask materials for respiratory protection.


Subject(s)
Filtration , Masks , Materials Testing/methods , N95 Respirators , COVID-19/prevention & control , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Polyesters/chemistry , Polypropylenes/chemistry , Porosity , SARS-CoV-2 , Spectrum Analysis, Raman , Wettability , X-Ray Diffraction
6.
ACS Appl Bio Mater ; 4(2): 1307-1318, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1069089

ABSTRACT

Recent evidence suggests that proinflammatory cytokines, such as tumor necrosis factor α (TNF-α), play a pivotal role in the development of inflammatory-related pathologies (covid-19, depressive disorders, sepsis, cancer, etc.,). More importantly, the development of TNF-α biosensors applied to biological fluids (e.g. sweat) could offer non-invasive solutions for the continuous monitoring of these disorders, in particular, polydimethylsiloxane (PDMS)-based biosensors. We have therefore investigated the biofunctionalization of PDMS surfaces using a silanization reaction with 3-aminopropyltriethoxysilane, for the development of a human TNF-α biosensor. The silanization conditions for 50 µm PDMS surfaces were extensively studied by using water contact angle measurements, electron dispersive X-ray and Fourier transform infrared spectroscopies, and fluorescamine detection. Evaluation of the wettability of the silanized surfaces and the Si/C ratio pointed out to the optimal silanization conditions supporting the formation of a stable and reproducible aminosilane layer, necessary for further bioconjugation. An ELISA-type immunoassay was then successfully performed for the detection and quantification of human TNF-α through fluorescent microscopy, reaching a limit of detection of 0.55 µg/mL (31.6 nM). Finally, this study reports for the first time a promising method for the development of PDMS-based biosensors for the detection of TNF-α, using a quick, stable, and simple biofunctionalization process.


Subject(s)
Dimethylpolysiloxanes/chemistry , Immunoassay/methods , Tumor Necrosis Factor-alpha/analysis , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Carbon/chemistry , Humans , Immunoassay/instrumentation , Limit of Detection , Microfluidics , Microscopy, Fluorescence , SARS-CoV-2/isolation & purification , Silicon/chemistry , Tumor Necrosis Factor-alpha/immunology , Wettability
7.
Int J Biol Macromol ; 164: 1898-1907, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-711139

ABSTRACT

With the current global outbreak of novel coronaviruses, the fabrication of decomposable wet wipe with sufficient wet strength to meet daily use is promising but still challenging, especially when renewable cellulose was employed. In this work, a decomposable cellulose-based wet wipe substrate is demonstrated by introducing a synthetic N-vinyl pyrrolidone-glycidyl methacrylate (NVP-GMA) adhesive on the cellulose surface. Experimental results reveal that the NVP-GMA adhesive not only significantly facilitates the chemical bonding between cellulose fibers in the wet state, but also increase the surface wettability and water retention. The as-fabricated cellulose-based wet wipe substrate displays a superb water retention capacity of 1.9 times, an excellent water absorption capacity (completely wetted with 0° water contact angle), and a perfect wet tensile index of 3.32 N.m.g-1. It is far better than state-of-the-art wet toilet wipe on the market (non-woven). The prepared renewable and degradable cellulose-based substrate with excellent mechanical strength has potential application prospects in diverse commercially available products such as sanitary and medical wet wipes.


Subject(s)
Biodegradable Plastics/chemical synthesis , Epoxy Compounds/chemistry , Methacrylates/chemistry , Pyrrolidinones/chemistry , Adhesives/chemistry , Antiviral Agents/chemistry , Cellulose/chemistry , Tensile Strength , Water/chemistry , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL